
What is the Problem with Images?

Anyone who has ever waited a long time for a web page to load

knows that it is extremely frustrating. Website loading speed is directly

linked to the bounce rate of a site: the longer visitors wait, the more

likely they will abandon the site. For many eCommerce or

service-oriented websites, this means lost sales or conversions. For

many large eCommerce websites, this amounts to a multi-million

dollar problem that needs to be solved.

Images are a major cause of slow websites. On average, over 60% of

a website’s data payload is images. And both websites and images

continue to bloat over time. From 2014 to 2021, the median mobile

website has grown from 561kB to 1,950kB, or almost 250%.

Google recognizes that this page bloat degrades performance and

has a negative impact on the user experience. To encourage websites

to solve this problem, they have started to measure performance with

a tool called PageSpeed Insights. This PageSpeed score impacts how

Google ranks search engine results. With PageSpeed scores, websites

have incentive to improve performance, and therefore Google rank-

ings.

This white paper reviews the pitfalls of traditional way to address

image optimization using responsive images. It also provides a more

effective and easier solution provide by the ImageEngine image-

optimizing CDN.

Achieving High Performance and Scalability
in Device Detection
W H I T E P A P E R

Simplifying Responsive Images

W H I T E P A P E R

Copyright © 2022 ScientiaMobile, all rights reserved. WURFL®, ImageEngine® and respective logos are trademarks of ScientiaMobile.

561kB

1,950kB

2014 2021

Mobile Website
Average Page

Weight

Simplifying
Responsive

Images

What are Responsive Images?

Responsive images, as defined in the W3C Working Group, is markup that

enables the browser to request different image URLs in response to different

environmental conditions. For example, a desktop screen presents very different

environmental conditions than a smartphone or tablet. A browser should be able

to respond to these conditions and dynamically display an optimal image.

These environmental conditions are typically expressed to the browser through

CSS media features. Some common media features are device pixel ratio (DPR)

and maximum width of the screen.

To achieve their goals, the working group introduced several new HTML markup

elements and attributes to assist with responsive images. These include adding

the sizes and attributes to the element. The working group also added

a brand new <picture> element. We will explore how these can be used in

examples below.

Since responsive images were introduced several years ago, many organizations

have evangelized its benefits. For example, at the Chrome Dev Summit 2018,

Google focused on images as the greatest barrier to faster web sites. They also

put together a guide to help developers grapple with responsive images.

Furthermore, Google listed some tools on how to optimize images, including

ImageEngine by ScientiaMobile.

Nevertheless, adoption of responsive images has remained challenging for many

developers. Why?

Responsive images (without the right tools) increase complexity and add more

work. Implementing responsive images raises the classical trade-off

W H I T E P A P E RSimplifying Responsive Images

2

between cost, time, and quality: “How cheaply and quickly can I make this web

page with a reasonable level of responsive qualities?”

In this paper, we will analyze what makes responsive images so difficult to

deploy. We will also provide some guidance about ways to use tools that

simplify and automate responsive images.

What is Involved in Deploying Responsive Images?

Google points to four key optimization steps that will lead to faster responsive

images:

1. Reformatting to the appropriate display size and pixel density of the screen

2. Converting to the appropriate file format

3. Applying the appropriate image compression

4. Using lazy loading

3

������
��������
����

���������������

������
������

W H I T E P A P E RSimplifying Responsive Images

Below is a basic example that focuses on the first step, reformatting to the

resolution of the device. The snippet below tells the browser to download and

display pic_480.jpg for 1.5 dpr screens, pic_640.jpg for 2 dpr screens and use

the pic_320.jpg as a fallback for all other screens.

<img

 src=”pic_320.jpg”

 srcset=”pic_480.jpg 1.5x, pic_640.jpg 2x,

 width=”320” alt=“fixed width”>

As displayed above, three versions of the image are required. Someone, or

something, must create them, which costs money and takes time.

The three dpr cases illustrated above are a conservative estimate. According to

our analysis, in order to address 95% of devices with images specifically tailored

to their device pixel ratio, developers need to provide nine different images.

And who says there won’t be 15 different device pixel ratios to consider in the

future?

4

One can make the responsive code more specific by using the sizes attribute to

direct the browser to use the right image for certain viewport sizes by applying

media queries. This is powerful functionality, which also handles device pixel

ratio. However, what started out as a simple scenario for applying srcset can

quickly balloon one’s code and require much more work in preparing multiple

sizes of images.

Here is another example that focuses serving images that are not only different

pixel sizes, but also images that should be cropped differently or have a different

aspect ratio:

<picture>

 <source media=”(min-width: 36em)”

 srcset=”2art_full_3050.jpg 3050w,

 2art_full_2048.jpg 2048w,

 2art_full_1280.jpg 1280w,

 2art_full_1024.jpg 1024w,

 2art_full_800.jpg 800w,

 2art_full_400.jpg 400w”

 sizes=”50vw” />

 <source

 srcset=”2art_crop_1860.jpg 1860w,

 2art_crop_1280.jpg 1280w,

 2art_crop_1024.jpg 1024w,

 2art_crop_800.jpg 800w,

 2art_crop_400.jpg 400w”

 sizes=”100vw” />

</picture>

The inner workings of the <picture> element is well described elsewhere and

with a little exploration, one can further expand and tune the above code. The

example above is quite comprehensive and covers high DPI tablets (like Kindle

Fire HDX 8.9”) all the way down to a 320px image. It is up to the browser to pick

whatever srcset it deems appropriate. Of course, the more options provided,

55

W H I T E P A P E RSimplifying Responsive Images

6

the better the result will be in terms of saved bandwidth and image quality. In the

example above, there are now 12 versions of the same image - twelve! The

performance savings difference between supplying three image choices versus

more than 12 images is substantial — almost an 84% improvement in payload

savings.

This is achieved without offering different image file formats. There are several

new modern image formats like WebP, AVIF, and JPEG 2000 that

dramatically reduce image payload without sacrificing quality. Adding the logic

to serve these image format options will multiply the code length even further.

With the power of media queries, developers can make this code as complex or

simple as deemed necessary.

And the impact of this alteration is not only on codebase size. It also impacts the

workflow for image creation and management. All of these versions will require

the developer to generate, manage, and store these image options.

What Are Client Hints and How Do They Help?

Client Hints are the missing link between the browser and the server when it

comes to layout information. Instead of specifying every possible image

breakpoint, pixel density, and format in a responsive image markup, Client Hints

appends the current environmental condition scenario to the HTTP request,

allowing the web server to pick the perfect fit — also known as content

negotiation. This means the browser can inform the server information of the

device’s pixel density, preferred image format, and viewport size. If the server is

equipped properly, then it can generate and respond instantly with an image that

is optimized to that device’s environmental condition. A properly-equipped

How Much Image Payload Savings Does
Automatic Device-Aware Optimization Generate?

One Full Size Orignal 3 Image Variants
(Responsive)

Automatic, Device-Aware
Optimization

84%

37%

0%

Im
a

g
e

Pa
yl

o
a

d
 S

a
vi

n
g

s

7

server has an image management service that takes the Client Hints and either

dynamically generates or selects and serves an image tailored to the parameters.

Either way, the developer needs a service that generates multiple versions of the

images.

Potentially, Client Hints streamlines the image selection process and improves per-

formance overall. However, most developers do not choose to use Client Hints for

several reasons. First, many developers do not want to build a server-side image

management service that leverages Client Hints, even if it provides performance

improvements. Serving the correctly-sized image, to the proper device, in the

proper resolution, as fast as possible is not as easy as one might think. It is best left

to an external enterprise-grade service. Second, Client Hints is currently supported

only on Chrome, Edge, and Opera, so developers will need to plan accordingly for

Safari, and other browsers that do not support Client Hints. Edge server device

detection is a good solution that covers all browsers when Client Hints is not avail-

able.

So where does this leave developers? Without Client Hints, developers must rely

on the verbose responsive HTML markup that was initially mentioned. The browser

needs to perform a round trip to determine the image breakpoints and select the

appropriate version. With Client Hints, developers need an automated service that

can leverage this information.

W H I T E P A P E RSimplifying Responsive Images

8

How to Simplify the Responsive Image Process

Simplifying responsive images requires establishing a process to learn a great

deal about the image, the device, and the browser. Google recommends several

preparatory and execution steps to generate performant images (for Chrome)

and deliver them responsively. These include:

• Know the browser

• Know the device

• Select the appropriate file format

• Select the appropriate compression

• Select the right display size

• Render the image

• Write responsive image code to select the correct variant of the image

Simple, right? The steps are clear enough, but Google makes it sound easy and

painless. The reality is that a simple website with a small number of images might

be able to follow this responsive image process. But implementing this workflow

on a site with thousands of images while maintaining quality is challenging and

potentially very labor intensive.

These steps should be systematized and automated. However, the process

Google describes (in step 2 at web.dev/fast) requires stringing together disparate

tools and writing a great deal of additional code.

9

For example, without responsive images, there is one image and one simple

tag of code. Adopting the responsive image approach generates approximately

nine image variants and over 20 lines of code with complicated breakpoint

calculations. Before, developers could add an image in seconds. Now, they are

looking at a much longer multi-step coding process.

And given the fast-pace of change in mobile devices, image formats, and

resolution, there are bound to be problems.

A Better Solution: Automation Through an Image CDN

Instead of reinventing the wheel, there is already an automated tool available. An

image CDN with device-aware edge servers can automatically manage

responsive images’ complexity. ImageEngine by ScientiaMobile takes the original

image, instantly recognizes each distinct browser and device model requesting

an image, compresses the image into the right format, and delivers it via a global

CDN. On top of this automated processing, ImageEngine provides better results

than with traditional responsive images. Our analysis shows that the dynamic op-

timization of ImageEngine can yield up to an 84% payload improvement, which is

much more than the typical three image approach of responsive images.

While there are still solid reasons that a developer might use responsive images,

say for art direction, ImageEngine can assist by handling all the responsive resizing

and shrink over 20 lines of <picture> markup down to a single line. By retrofitting

existing tags and leveraging Client Hints, developers can streamline code

and accelerate their web pages.

ImageEngine cuts out all of the work. No guesswork about breakpoints, no endless

resizing processes, no debates about image quality. We make it simple.

W H I T E P A P E RSimplifying Responsive Images

10

In particular, here are some keys to performant images that are already features

of ImageEngine:

• Display size and density. Done automatically, faster and more accurate be-

cause of ImageEngine’s server-side device detection.

• Works with Client Hints.

• JPG/PNG to WebP. Done automatically.

• JPG/PNG to JPEG 2000 – Done automatically. Better for older Apple devices

and Safari.

• GIF to MP4/WebP. Done automatically. No re-coding required.

• Compression while optimized for perceptible quality. Done automatically.

• Easy integration with Magento plugin, WordPress plugin, Shopify, Drupal,

SiteCore, Sitefinity, Prestashop, SAP Commerce Cloud, and Kentico.

• Great development tools for React, Gatsby, Vue, and Angular.

• Access to AWS S3 or Google Cloud Storage.

• URL directives commands to control individual images and art direction.

• Custom Delivery Address to match your existing domain.

• SSL certificates for security and WAF with DDoS.

• CDN caching and delivery with cache purge API.

• Performance and usage statistics.

• Dedicated managed edge servers and/or optimization engines for

enterprises with high usage and private Cloud needs.

• 24/7 email support and ticketed enterprise support.

11

What is an Edge Server on a Content Delivery Network?

In addition to automation, an ImageEngine offers other performance benefits

because of its edge server architecture. An edge server is a server located at vari-

ous Points of Presence (POP) around the globe. Content Delivery Networks (CDN)

use these edge servers to store content in cache in close geographic proximity to

the requesting users and their devices. Because they are closer and have content

readily available in caches, edge servers can deliver content faster than a single

origin server that might be far away. For example, ImageEngine has device-aware

edge servers available at more than 20 POPs around the globe.

What Makes a Device-Aware Edge Server?

Typically, edge servers hold content and they deliver what is requested. In contrast,

a device-aware edge server has

 built into its business logic. And

this device information drives a

number of optimizations in the

image CDN. For example, when

a user in Singapore uses his/her

Samsung Galaxy S8 to browse

an eCommerce site, its initial

HTTP request hits the edge

server in Singapore. The server

instantly identifies the Samsung

Galaxy S8 and several import-

ant capabilities of the device:

OS version, screen pixel densi-

Device Capabilities
Detected by Edge
Server
complete_device_name:
Samsung Galaxy S8
(SM-G950U)

device_os: Android

device_os_version: 8.0

resolution_width: 1440

resolution_height: 2960

pixel_density: 565

mobile_browser: chrome

webp_lossless_support: true

��������������

������������

W H I T E P A P E RSimplifying Responsive Images

12

ty, screen resolution, support for advanced image and video formats (e.g. JPEG

2000 or WebP). As part of a CDN, this edge server can act on the image request

instantly, or it can share device information with other parts of the image CDN.

Do Device-Aware Edge Servers Make Delivery Faster?

If the edge server has identified a specific device model before, then it will have

images for the requested web page that are tailored exactly to the specs of that

device. 98% of the time, the edge server can make a lightning-fast response from

its cached images. Not only are the cached images geographically close to the

end user, but the images are also dramatically smaller payload than the origi-

nal-sized images. How much smaller? Up to 80%!

With device-aware edge servers delivering dramatically smaller images from

geographically close locations, websites are able to cut several seconds off their

page loading time.

How Does Device Information Reduce Image Payload?

Typically, an image CDN like ImageEngine will have several variations of a web-

site’s images in its primed cache at the edge server. However, for a small percent-

age of requests, the edge server encounters a device model it has not seen in the

recent past. The edge server can then send the image request and the specifica-

tions of the device on to the image optimizer server. The image optimizer pulls

the website’s high-quality original image. It then performs three steps to reduce

image payload.

First, ImageEngine uses the device resolution to change the size of the image.

For example, it cuts an original image 3,000 pixels wide to only 1,440 in the case

of the Samsung Galaxy S8.

DNS CNAME:
Delivery Address ←→

ImageEngine Address

Request
Image

Device-Aware
Optimizing
CDN Server

Image
Origin or
AWS S3

Pull
Master Image

Deliver Optimized
Image From CacheWebP

PNG

Up to
80%
Payload
Savings Origin

PNG

13

Second, it compresses the image using an image optimizing tool. This cuts out

extraneous data that does not impact the visual quality of the image on the re-

questing device. ImageEngine knows just how far to compress based on the device

intelligence from edge servers.

Third, ImageEngine selects the most efficient file format supported by the device,

browser, and its operating system version. For example, for the Samsung Galaxy S8

running Android 8.0 and a Chrome browser, it would convert from JPEG to WebP.

WebP is an image format from Google that stores image data more

efficiently than JPEG. On average, converting images to WebP (and applying other

optimizations) saves 79% of image payload.

In the rare instances when ImageEngine needs to create a new optimized image,

it will process and respond in milliseconds. This real-time optimization approach

helps tailor image payload reduction and only convert and keep in cache images

that are commonly requested. And with a cache hit rate of 98%, the response time

is faster than a basic CDN or other image management solutions.

Comparing the Responsive Image Process to an Image CDN

In the end, the fact stands that images make up over 60% of website payload.

Anything developers can do to minimize that payload will improve web

performance. However, developers need to think strategically about how to

achieve those performance gains.

The responsive image specification has ambitious and worthy performance goals.

With <picture>, srcset, and sizes, developers have the syntax to deliver

responsive images. However, this power comes with a huge increase in workflow

Detect Mobile Devices

Optimize Images

Deliver by CDN

Keys Steps to High Performance Images

W H I T E P A P E RSimplifying Responsive Images

14

complexity.

Developers should think longer term about maintaining the site. New devices,

browsers, screen sizes, display densities, and file formats will arise. An

unautomated responsive image approach is difficult to implement and tedious

to maintain. In the end, an enterprise with thousands of images is better served

using an image CDN to handle this complexity and ensure fast image delivery.

To simplify responsive images and achieve performance goals, it is best to con-

sider an image CDN like ImageEngine. Most image CDN users see up to 80%

reduction in image payload and dramatically faster website load time. What this

means for eCommerce sites is faster site speeds, especially on mobile. Faster

eCommerce sites can translate this increased speed into millions of dollars of ad-

ditional sales as fewer users abandon their shopping carts and checkout success-

fully and without interruptions in their user experience.

90% savings

57% savings

58% savings

72% savings

80% savings

WebP

JPEG
optimized

AVIF

JPEG
2000

GIF to
aWebP

Payload Savings by Final Image Format

Image Payload Savings

